

A COSMIC FUNCTION POINT TEST EFFORT
ESTIMATION MODEL FOR MOBILE APPS: AN

INDUSTRIAL CASE STUDY

Anureet Kaur1*, Kulwant Kaur2

1 Asst Professor,Khalsa College,Amritsar,Punjab
2 Asst. Professor, Apeejay Institute of Management Technical Campus Jalandhar, Punjab1

anumahal@gmail.com, 2 kulwantkaur@apjimtc.org

Abstract: Development and testing of mobile software are deemed distinctive from building traditional
software encroaching to its distinctive features and thus entails extra efforts as paralleled to traditional
software. Mobile application testing is an imperious and essential feat in the application development
lifecycle ratifying quality and unwaveringly influences the development effort of the application. First
objective of this paper is to validate the applicability of COSMIC test effort estimation model for mobile
applications. Second objective is to obtain feedback from the software company for additional improvement in
the model. A case study is conducted in a small size mobile software company. Results are reported via a
comparative study after implementing the COSMIC test effort model in the form of a web tool. The results
from the case study show that: (1) An informal expert-based estimation method used within the company is far
less near to the actual effort incurred. (2) Mobile app and test factors act as a driving force in improving the
test effort estimation. (3) Findings from the results determine the significance of mobile app factors which
cannot be overlooked in the estimation progression of mobile software testing.

Keywords: mobile applications, test effort estimation, software engineering, case study

1. INTRODUCTION

 In contemporary years, progress in mobile technology has begotten an
extortionate transformation in the day-to-day regime of human beings.
Smartphones/mobile devices are proliferating in each demeanor of human life.
There is not a single domain left where mobile technology has not assumed control.
“A mobile app, short for mobile application or just app, is an application software
designed to run on smart phones, tablet computers, and other mobile devices” Chen
and Kotz, (2000). Mobile applications are available to be downloaded from app
stores or are pre-installed by mobile manufactures. There are three types of mobile
apps: Native, Web and Hybrid Apps.

 Native Apps: The applications developed for a particular platform and
installed on the device e.g. they can be installed from the application store
(Google Play, Apple app store, etc.).

 Web Apps: Web-based applications are available via the browser on device
or third party browsers installed on the device.

 Hybrid Apps: These applications combine elements of both native and Web
applications. They are available in the application store just like native apps
and take the help of HTML to open in a browser like web apps.

The approach toward building up the mobile apps continues in the midst of the
testing stage to confirm the accuracy of the mobile application. Test Estimation of
mobile apps assist in lessening the comprised perils and thus succeeding with simple
and accurate testing process.

There are various prevailing testing effort estimation techniques used for
desktop/laptop software formed on judgment and rules of thumb, procedures based
on analogy and work breakdown, practices based on factors and weights, techniques

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 678

based on size, fuzzy and other models by Abhishek et al.,(2010), Arumugam and
Babu (2015), Bhattacharyya and Malgazhdarov (2016), Islam et al., (2016),
Jayakumar and Abran (2013), Nageswaran (2001), Sharma and Kushwaha, (2013),
Souza and Barbosa (2010), Srivastava et al., (2012), Srivastava (2015), Srivastava et
al. (2014), Zapata-Jaramillo and Torres-Ricaurte (2014). Certain authors Aranha and
Borba (2007), Wadhwani et al. (2008) have suggested test effort estimation models
for mobile apps and Parvez (2013) has altered traditional testing effort estimation
techniques to mobile software. But none have measured characteristics/factors
explicit to mobile applications Kaur and Kaur (2018). One model based on COSMIC
function point is proposed by Kaur and Kaur (2019) for estimating the test effort in
mobile software. The model is also validated using k-fold cross-validation method.
The mobile app characteristics are also given due weight along with test factors.

 The first objective of this research is to further validate the proposed model by
Kaur and Kaur (2019) using a case study to identify its actual implementation in the
real mobile software industry. An additional objective is to study the present method
followed for test estimation in the mobile software industry and recognizing how
practicing of proposed test effort model in form of a web tool affects the testing
process. Also to recognize additional existent challenges encountered whilst test
estimation of mobile apps.

The paper is divided into five sections. Section 2 summaries the COSMIC Test
Effort Estimation Model proposed by authors in their previous work. Section 3
presents the design of research comprising information on company profile and data
collection of the mobile app under consideration. Also, the computation of the test
effort is presented in this section. The comparative result with the prevalent
estimation technique and the proposed model is presented in section 4 along with
some suggestions from the company professionals. Section 5 presents conclusion
and future work.

2. COSMIC TEST EFFORT ESTIMATION MODEL: AN
OVERVIEW

 A novel test estimation model for mobile apps is proposed in Kaur and Kaur
(2019) by contemplating the influence of different mobile app characteristics. The model
implementation starts with felicitating mobile application requirements. From the
requirements, the functional requirements are extricated and the size of functional
requirements is computed using COSMIC function size measurement method.
Details on COSMIC functional size method can be referred in in Kaur and Kaur
(2019). The functional size is measured as a functional test size for input to the
estimation model. The dataset of previously completed mobile applications is used
to generate the regression test effort estimation model.

 COSMIC FSM method is used to convert Functional User Requirements
(FUR) into CFP. The manual CFP count is verified using a VisualFSM tool Pentad-
SE (2014). The VisualFSM COSMIC Quick Start tool catered by Director of
Pentad-SE Ltd can be used for computing CFP and is also accessible online for
academic/industrial usage.

For figuring MobileFactor, 15 mobile app characteristics celebrated in Kaur and Kaur
(2018) are measured. The formula for calculating MobileFactor is shown in equation
(1).

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 679

15

1

*i i
i

MobileFactor MC W


 
 (1)

where MCi is rating from 0 to 3 for ith mobile characteristic and Wi is assigned a

weight for the ith mobile characteristic.

Similarly, for TestFactor calculation, seven test factors are measured. The

formula for calculating TestFactor is shown in equation (2).

7

1

*i i
i

TestFactor TF W



 (2)

where TFi is rating from 0 to 3 for ith test factor and Wi is assigned a weight for ith

test factor.

3. RESEARCH DESIGN

 3.1 Case Study Design

 A case study is conducted following the guidelines in Runeson and Höst (2009).
The goal of directing the case studies is to validate the applicability of the proposed model
in real mobile apps test effort estimation. A case study is directed for mobile app test
effort estimation on US-based software industry involved in development and testing
of web and mobile applications. An execution of the case study followed the
following steps:

1. Elicitation of the Function User Requirements (FURs) related to the mobile
app to be developed and tested.

2. Estimation of the test effort using the test effort estimation model for mobile
apps.

3. Evaluation of the results of estimation based on a comparative study with
actual effort and prevalent estimation technique in the software company.

3.2 Company Context

 The mobile application case study was conducted at SK TECHNOLOGIES,
US. SK Technologies is a growing Web and Mobile App Development Company in
the US with offices in India. The US site has around 50 employees. The mobile
software department has 10 developers out of which 4 are under testing team and
rest are fully devoted development teams. The documentation regarding user
requirements provided by the developers was further converted to a format useful in
the test effort estimation model.

3.3 Data Collection

3.3.1 Informal Interview: The purpose of the semi-structured interview with one
manager, three developers, and two testers was to gain a better understanding of the

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 680

estimation process prevalent in their company for mobile apps. One author asked the
questions and other author noted down the answers. The questions in the interview
were divided into following categories:

1. Related to the rating for Mobile app factors and Test factors.

2. Related to the present method followed for test estimation in the mobile
software industry.

3. Related to knowing additional existent challenges encountered whilst test
estimation of mobile apps.

 The answer to question 1 is presented in the section 3.5 and 3.6. Section 4.1
presents the prevailing technique of testing estimation in the company. Section 4.2
presents challenges or feedback or limitations encountered in estimating test effort.

3.3.2 Documentation of Mobile Application Case Study (TradeInShop): The
development team provided us with access to mobile app documentation starting
from User requirements. The project was developed and tested under the guidance
of the manager of the company. The development team involved two members and
one tester. The actual effort for developing the project was 537 Person-Hour and
took 230 Person-Hour for testing. The name of mobile app which is considered for
case study is TradeInShop. TradeInShop mobile app allows ordering the items
through a web shopping service shopping. So this app comes under category of
mobile web app. The mobile app will be designed for Android mobile phones. The
features of the app comprise of data handling, searching, selling items, adding them
to favourites and allowing user messaging system. While running the app, users can
access the features on the mobile phone and data available on a database can
accessible with or without login. Table 1 provides description of the TradeInShop
App.

TABLE 1. DESCRIPTION OF MOBILE APP CASE STUDY FROM SK TECHNOLOGIES, US

Attributes Description

Size of App Medium

Type of Mobile App Domain Shopping

Operating System Android

Language Used Java

Development Team 02 Developers

Testing Team 01 Tester

Actual Development Effort 537 Person-Hour

Actual Test Effort 230 Person-Hour

Test Tool Used Robotium

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 681

Description of Functional User Requirements (FURs) for the TradeInShop mobile
app is presented in Appendix A. These requirements will act as an input to the test
effort estimation model for counting the functional size of the mobile app. The
naming convention for each FUR is numbered from FUR1 to FUR21.

3.4 Counting COSMIC Function Points (CFP) for FURs using VisualFSM Tool

 Figure 1 presents the summarized report for CFP count from VisualFSM
tool. The CFP count obtained from VisualFSM tool acts as an input to a web tool
used for calculating Test Effort for mobile apps. The web tool is developed using
ASP.NET and Visual C# programming language. Figure 2 shows the input of CFP
test size along with the mobile app name and description into the web tool for
further calculation.

Figure 1. Final Reports with CFP Count

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 682

Figure 2. Input to Mobile App Test Effort Estimation Tool

3.5 Non- Functional User Requirements Description (MobileFactor)

 The identified mobile application characteristics are considered under non-
functional user requirements. The ratings are assigned to each characteristic based
on user requirements and collected through the interview from testers. The ratings
for each mobile app characteristic are entered in a DropDownList on the web tool as
shown in figure 3.

(1) Limited Memory (LimM): Test the app for memory requirement for installation
and related files. So value 2 is assigned covering under the average impact.

(2) Limited CPU (LimC): Test the app that it should not consume more than 40 % of
CPU while running on mobile devices. So value 1 is assigned for this factor.

(3) Limited RAM (LimR): Test the app if it consumes more than 45% of RAM
while running. So this requires an average test with value 2 assigned for 40% to
70% RAM consumption.

(4) Limited screen size (LimSS): The app should be tested for content display on
varying screen size of Samsung devices and the app outlook should not vary from
its original design at most 60% and also test for both portrait and landscape mode
and also for different orientation (portrait and landscape). So value 2 is assigned
for this constraint.

(5) The diversity of User interfaces (touchscreen, keypad, voice) (UserInter): The
app should be tested at minimum for its behavior when input is through
touchscreen and keypad. So value 2 is assigned.

(6) Context-awareness (CAwar): Not applicable. So test is not performed with 0
value assigned.

(7) Diverse Mobile Connections (2G, 3G, 4G, and various wireless networks
(MConn). This app needs to be connected to internet for accessing web service,
so it should be tested for at least 2G,3G and over Wi-Fi networks. So this is a
major factor and value 3 is assigned.

(8) Different application types (Native, Hybrid, Web): As this is a mobile web app,
so value 2 is assigned for this factor.

(9) Diverse operating systems (software) (DivOS): The app is being developed and
tested only for the android platform. So only testing for android OS is involved
giving value 1for this factor.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 683

(10) Diverse devices (hardware) (DivH/w): The app should be tested for Samsung
mobile devices in general. So with this requirement value, 1 is assigned for this
factor.

(11) Interrupt (Int): The app should handle the incoming calls, comprising under
category of 40% to 70%. So value 2 is assigned for this factor.

(12) Integration with other Apps (IOA): The app will not be integrated with other
installed app on the mobile. So testing won’t be required for this aspect. So with
N.A., value 0 is assigned.

(13) Response Time (RT): The app should be tested for its response time i.e. 2
seconds at most. So value 2 is assigned as it comes under the average testing
requirement.

(14) Limited Battery power (LBT): The app should be tested when the battery power
reaches below 10%. As this is following some standards by given platform to
preserve battery, value 1 is assigned.

(15) Network Availability (NetAv): As this app needs to be connected to internet for
accessing web service, so it should be tested for network connectivity availability
and its behavior with poor or no connection. So this is a major factor and value 3
is assigned.

After pressing the “Calculate MobileFactor” button on the web tool, the value of
MobileFactor is displayed. Then press the next button to move to the next page.

Figure 3. MobileFactor Calculation

3.6 Test Characteristics of App (Testfactor Consideration)

 The test characteristics identified from (2013), de Almeida et al.,
(2009,2001,2014). These test characteristics are rated collected through the
interview from testers and testing requirements. Again the ratings for each test
characteristic are entered in a DropDownList on the web tool as shown in figure 4.

(1) Test Tools (TT): The testing tool used by the testing team is robotium
helping to automate the test process. So testing complexity is expected to
decrease as compared to manual testing. The value 1 is assigned due to this
reason.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 684

(2) Documented Inputs (DocInp): The SRS documents are used for test input
with good quality. So value 0 is assigned as it may not add to testing
complexity.

(3) Development Environment (DevEnv): The developers used eclipse
environment with average development resource. So value 2 is assigned to
this test factor.

(4) Test Environment (TEnv): The app will be tested on emulators of the
hardware as the availability of all mobile devices running Android OS is not
available with the testing team. Only three Samsung mobile devices are used
to perform real device testing. Value 2 is assigned for this factor.

(5) Test-ware Reuse (TR): The testing tools, test scripts are reused decreasing
the test redesigning and further decreasing the test complexity. So value 1 is
assigned.

(6) Distributive System (DSys): No distributive environment. So with N.A.
value 0 is assigned.

(7) Security Features (SecFea): As login features with username and password
are used for accession with web server so average security is required to
protect its information and data. Value 2 is assigned for this constraint.

Again the ratings for each test characteristic are entered in a DropDownList on
the web tool as shown in figure 4. After pressing Calculate TestFactor button on the
web tool, the value of TestFactor is displayed. Then Press the next button to move
to the next page.

Figure 4. TestFactor Calculation

3.7 Test Effort Estimates with Proposed Model (Kaur and Kaur, 2019a)

 The proposed model is quite simple to use and its applicability is presented
with a mobile project case study. After gathering the inputs required for the
proposed model with CFP=110, MobileFactor= 52.44 and TestFactor= 26. The
inputs are fed into the MLR equation (3) in Kaur and Kaur (2019) and implemented
as a web tool shown in figure 5.

1.103 0.164 0.1990.309*()TestEffort CFP MobileFactor TestFactor   (3)

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 685

Figure 5. Final Report on test estimation of TradeInShop

The web tool yielded an estimate of 207.655Person-Hour which is required to test
the app. Further the estimated effort can be used for setting the cost incurred on
testing. If the tester is paid $5 per hour for app testing then $1025 can be quoted as
testing cost.

3.8 Accuracy Parameters

The assessment measure to calculate the accuracy of the estimate is MRE which is
exercised in this paper. MRE (Magnitude of Relative Error): MRE is a prevalent
measure to evaluate estimation models (2012). The formula for MRE calculation is
presented in equation (4)

| Pr |ActualTestEffort edictedTestEffort
MRE

ActualTestEffort




 (4)

4. RESULTS FROM CASE STUDY

4.1 Comparison of Test Effort Estimation Results

In this case study, different experiments are performed to compare the proposed
methodology against a traditional approach where the test effort estimation is
generated by a human expert and is asked to estimate the new project’s effort based
on personal experience and knowledge. This informal expert-based estimation
method used within the organization is far less near to the actual effort incurred.
Expert judgment effort estimation techniques are based on the person’s experience
and intuition. The evaluation indices MRE is calculated for the proposed model and
expert estimation method prevalent in SK Technologies indicates that the proposed
model performs better than expert estimation as shown in table 2. The proposed
model gives better MRE with 9.71% as compared to MRE for expert estimation i.e.
30.4%. Figure 6 shows that the proposed test effort estimation model predictions are
more near to actual test effort. Figure 7 graphically shows that MRE percentage is
high with an expert estimation as compared to the proposed model.

TABLE 2. COMPARISON OF PREVALENT TEST EFFORT ESTIMATION TECHNIQUE
WITH PROPOSED MODEL

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 686

Parameters TradeInShop Mobile App

Actual Test Effort(P-H) 230

Estimated Test Effort by Proposed Model 207.655

Estimated Test Effort by Expert Estimation 300

MRE Proposed Model 9.71%

MRE Expert Estimation 30.4%

Figure 6. Comparison of Proposed Model with Expert Estimation Technique

Figure 7. MRE Comparison for Proposed model and Expert Estimation

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 687

4.2 Feedback on estimating the mobile application testing process using the
proposed model

 The interview answers regarding feedback on estimating the mobile application

testing process using the proposed model are listed below:
 One tester suggested introducing more factors while estimating the test

effort such as test team size and tester experience.
 Also, another tester suggested considering test cycle phase-wise prediction

e.g. Test execution effort estimation can be explored after the mobile app is
developed and before testing is started.

 Testers think that there might be more than 15 mobile app characteristics
that need consideration while estimation, i.e. security testing of the app, data
integrity, etc.

 Needs documentation and little experience in using VisualFSM tool for
counting COSMIC Function Point (CFP).

 The web tool implementing the proposed test effort estimation is very easy
to use, but the assignment of ratings for MobileFactor and Testfactor always
requires help in form of handouts.

 One tester asked about the model basis (Regression based Model) and
suggested to use other machine learning techniques for prediction to check if
the accuracy of the prediction further improves or not.

5. CONCLUSION AND FUTURE REMARKS

In this paper, a case study is presented that shows usage of the proposed test effort
estimation model in real software companies. First, the company profile of the case
study is presented, followed by a description of the mobile application software to
be developed and tested. The Functional User Requirements (FURs) of mobile apps
are presented. The VisualFSM tool is used to calculate the functional or test size of
mobile apps from FURs. The test effort estimation tool for mobile apps is developed
based on the proposed model by authors. This tool is developed using ASP.NET and
C# programming language. The functional or test size in terms of CFPs is given as
an input to the tool. To calculate MobileFactor and TestFactor, ratings for mobile
app characteristics and test characteristics are collected in the range from 0 to 3 in a
DropDownList of the tool. The final screen in the tool presents the final test effort
in terms of Person-Hour. The results obtained using the tool is compared with the
prevalent estimation technique in the company. The results clearly show that the
proposed model gives a better prediction as compared to expert estimation currently
used in the company. One of the limitations of the proposed work is the scarcity of
mobile app projects available to create the dataset. Published datasets such as
ISBSG (2007), NASA (2007), PROMISE (2004), Experience (2007), and Maxwell
(2000) do not include information about mobile apps. The proposed test effort
model which focused on the mobile apps has been validated and also measured for
accuracy but it is considered that the proposed model needs to be improved for
future needs. The following recommendations in form of interview are collected to
improve the model as future work.

1. Machine learning techniques and case-based reasoning can be exploited to
predict test effort and compare the results obtained with the proposed Regression
model.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 688

2. Mobile app specific characteristics identified in the literature are mapped to
NFR glossary in Kaur and Kaur (2018). There can be other characteristics not
identified in the literature survey which can further be explored and mapped to NFR
that may affect the test effort.

3. Test factors such as test team size and tester experience can be considered for
estimating test effort.

4. Test cycle phase-wise prediction e.g. Test execution effort estimation can be
explored after the mobile app is developed and before testing is started.

APPENDIX A: Functional User Requirements for
TradeInShop App

(1) FUR1: Sign Up

The User enters the User details comprising a username, name, surname,
password, e-mail address and link to profile Photo.

x- Trader Fills the signup message comprising the user details then sends it to the
Web Service which response by sending an e-Mail with an activation code to the
User.

The User enters the activation code then x-Trader sends it to the Web Service

If the sign-up succeeds then x-Trader receives a confirmation message from Web
Service then displays it to the user.

x-Trader creates the User Profile in the local database

If the sign-up fails then x-Trader receives an error message from Web Service
describing the error then displays it to the user.

(2) FUR2: Log In

The User enters the user credentials comprising username or e-Mail and the
password.

x-Trader sends the logon request credentials to the Web Service.

If the logon succeeds x-Trader receives a logon success message from the Web
Service which it displays to the User.

x-Trader updates the User logon state in the local database.

If the logon fails x-Trader receives an error message describing the error from the
Web Service which it displays to the User.

(3) FUR3: Log Out

The User enters a request to logout.

x-Trader retrieves the User Profile credentials from the local database

x-Trader constructs the logout message comprising the credentials then sends
them to the Web Service.

If the logout succeeds then x-Trader receives a logout success from the Web
Service then displays it to the User.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 689

x-Trader updates the Logon state in the local database.

If the logout fails then x-Trader receives an error message from the Web Service
then display it to the User,

(4) FUR4: Search

The User enters the search criteria comprising item price, location, or category.

x-Trader constructs then search items message comprising the search criteria then
x-Trader sends it to the Web Service

x-Trader receives the Item list from the Web Service then displays it to the user.

(5) FUR5: Browse Profiles

The user enters a request for information about all Profiles.

x-Trader gets the User credentials from local database

x-Trader constructs the browse profiles massage comprising the request ID as the
credentials then sends it to the Web Service,

x-Trader receives a list of users comprising the name, profile, photo and a list of
items posted.

x-Trader displays the list of users and items lists to the user.

(6) FUR6: Browse Categories

The user enters a request for information about all categories.

x-Trader gets the user credentials from the local database.

x-Trader constructs the browse Categories message comprising the request ID and
the credentials then sends it to the Web Service,

x-Trader receives a list of Categories comprising the name and the number of
items in the category from the Web Service.

x-Trader displays the Category list to the User.

(7) FUR7: Browse Items

The user enters a request for information about all Items.

x-Trader gets the User credentials from the database.

x-Trader constructs the browse items message comprising the request ID and
credentials then sends it to the Web Service,

If the request succeeds x-Trader receives a list of Items comprising the name,
image, prices, and features from the Web Service then displays it to the User.

If the request fails then x-Trader receives an error message describing the
problem from the Web service then displays it to the user.

(8) FUR8: Edit Profile

The User enters the details of the User to be edited.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 690

x-Trader gets the User credentials from the local database.

x-Trader constructs the edit profile message comprising credentials and User
Details.

x-Trader sends the edit Profile message to the Web Service. The web service
responds by sending an e-Mail comprising a confirmation code to the User.

The User enters the confirmation code then x-Trader sends it to the Web Service.

If the edit succeeds then x-Trader receives a success message from the Web
Service and displays it to the User.

x-Trader updates the User profile in the local database.

If the edit fails then X-Trader receives an error message describing the error from
the Web Service and displays it to the User.

(9) FUR9: Buy Credits

The User enters the no of credits to apply to the account.

x-Trader gets the user credentials from the database.

x-Trader constructs the add credit message comprising no credits and credentials
then sends it to the Web Service.

The Web Service redirects the user to the Pay-Pal portal where payment is made.

If the payment is successful x-Trader receives a confirmation message from the
Web service

x-Trader displays it to the user.

(10) FUR10: Add Items to Cart.

The User enters the Item ID.

x-Trader gets the user credentials from the database.

x-Trader constructs the add item message comprising the Item ID and credentials
then sends it to the Web Service.

If the add succeeds x-Trader receives a confirmation message from the Web
Service then displays it to the User.

(11) FUR11: Purchase Items with Credit

The User enters the list of items to be purchased comprising the item IDs.

x-Trader gets the user credentials from the database.

x-Trader constructs the purchase message comprising the item list and credentials
then sends it to the Web Service.

If the purchase succeeds x-Trader receives a message from the Web Service
containing the number of credits remaining which is displayed to the User

If the purchase fails x-Trader receives an error message describing the problem
from the Web Service which it displays to the User.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 691

(12) FUR12: Request an Exchange

The User enters the offered Item ID and the required Item ID.

x-Trader gets the user credentials from the database

x--Trader constructs the request exchange message comprising offered item id,
required item id, and credentials then send it to Web Services.

if the request succeeds then x-Trader receives a success message from the Web
Service.

x-Trader updates the Exchange state in the local database.

if the request fails then x-Trader receives an Error message from the Web Service
which it displays to the User.

(13) FUR13: Approve the Exchange

x-Trader receives a request approve message comprising the offered Item ID, the
required Item

ID and the seller profile from the Web Service.

The User enters the exchange approve indicator.

x-Trader gets the user credentials from the local database.

x-Trader constructs the approve exchange message comprising the original
message contents and the approve indicator then sends it to the Web Service.

x-Trader updates the Item exchange state in the local database.

(14) FUR14: Decline the Exchange

x-Trader receives a request approve message comprising the offered Item ID, the
required Item ID and the seller profile from the Web Service.

The User enters the request decline indicator.

x-Trader gets the user credentials from the local database.

s-Trader constructs the decline exchange message comprising the request Id and
credentials then sends it to the Web Service.

(15) FUR15: Notify For Shipment

The User enters the email message comprising Item Details, shipping date, and
buyer e-mail.

x-Trader sends the e-Mail message to the User

x-Trader updates the exchange item state in the local database.

(16) FUR16: Add Item

The User enters the Item List comprising for each item details, images, amount
and price.

x-Trader gets the user credentials from the local database.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 692

x-Trader constructs the approve exchange message comprising the item list and
credentials then sends it to the Web Service

x-Trader updates the Item exchange state in the local database.

(17) FUR17: Edit Item

The user enters the details of the item to be edited.

x-Trader gets the user credentials from the Database.

x-Trader constructs the edit item message comprising item details and credentials,
then sends it to the Web Service

If the edit succeeds x-Trader receives a success message from the Web Service.

x-Trader updates the Item details in the local database.

If the edit fails x-Trader receives an error message from the Web Service which it
displays to the User.

(18) FUR18: Remove Item

The user enters the item ID.

x-Trader gets the user credentials from the Database

x-Trader constructs the remove item message comprising the item ID and
credentials, then sends it to the Web Service

If the delete succeeds x-Trader deletes the item from the local database.

(19) FUR19: Delete Profile

The User enters the ID of the user to be deleted.

x-Trader gets the user credentials from the Database x-Trader

x-Trader constructs the delete profile message comprising deleted user ID and
credentials.

x-Trader sends the delete profile message to the Web Service if the delete
succeeds x-Trader receives a success message from the Web Service

x-Trader deletes the profile from the local database.

If the delete fails x-Trader receives an error message from the Web Service which
is display to the User.

(20) FUR20: Mark as a Favourite

The user enters the item ID.

x-Trader gets the user credentials from the Database.

x-Trader constructs the mark favourite message comprising the item Id and
credentials then sends it to the Web Service

x-Trader updates the Item in the local database.

(21) FUR21: Rate and Comment

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 693

The user enters the rating details comprising item ID, comments and rating.

x-Trader gets the user credentials from the Database.

s-Trader constructs the rating message comprising the rating details and
credentials then sends it to the Web Service.

x-Trader updates the User rating and comments in the local database.

REFERENCES

[1] Abhilasha, Sharma, A., 2013. Test effort estimation in regression testing, in:
Innovation and Technology in Education (MITE), 2013 IEEE International
Conference in MOOC. pp. 343–348.

[2] Abhishek, C., Kumar, V.P., Vitta, H., Srivastava, P.R., 2010. Test Effort
Estimation Using Neural Network. J. Softw. Eng. Appl. 03, 331–340.

[3] Aranha, E., Borba, P., 2007. An Estimation Model for Test Execution Effort, in:
First International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007). IEEE, pp. 107–116.

[4] Arumugam, C., Babu, C., 2015. Test Size Estimation for Object Oriented
Software Based on Analysis Model. J. Softw. 10, 713–729..

[5] Bhattacharyya, A., Malgazhdarov, T., 2016. PredSym: estimating software
testing budget for a bug-free release. Proc. 7th Int. Work. Autom. Test Case Des.
Sel. Eval. - A-TEST 2016 16–22.

[6] Chen, G., Kotz, D., 2000. A Survey of Context-Aware Mobile Computing
Research. Dartmouth Comput. Sci. Tech. Rep.

[7] de Almeida, É.R.C., de Abreu, B.T., Moraes, R., 2009. An Alternative Approach
to Test Effort Estimation Based on Use Cases, in: 2009 International Conference
on Software Testing Verification and Validation. IEEE, pp. 279–288.

[8] Experience, 2007. Experience datasets [WWW Document]. URL
http://www.fisma.fi.

[9] ISBSG, 2007. ISBSG Dataset [WWW Document]. URL
https://www.isbsg.org/project-data/

[10] Islam, S., Pathik, B.B., Khan, M.H., Habib, M., 2016. Software test estimation
tool: Comparable with COCOMOII model, in: IEEE International Conference on
Industrial Engineering and Engineering Management. pp. 204–208.

[11] Jayakumar, K.R., Abran, A., 2013. A Survey of Software Test Estimation
Techniques. J. Softw. Eng. Appl. 6, 47–52.

[12] Kaur, A., Kaur, K., 2019a. A COSMIC function points based test effort
estimation model for mobile applications. J. King Saud Univ. - Comput. Inf. Sci.

[13] Kaur, A., Kaur, K., 2019b. Investigation on test effort estimation of mobile
applications: Systematic literature review and survey. Information Software.
Technolology Volume 110, June 2019, Pages 56-77.

[14] Kaur, A., Kaur, K., 2018. Systematic Literature Review of Mobile Application
Development and Testing Effort Estimation. J. King Saud Univ. - Comput. Inf.
Sci.

[15] Maxwell, 2000. Maxwell datasets [WWW Document]. URL
http://www.promisedata.org/?p=108.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 694

[16] Nageswaran, S., 2001. Test Effort Estimation Using Use Case Points, in: In:
Proceedings of 14th International Internet Software Quality Week.

[17] NASA, 2007. NASA datasets [WWW Document]. URL
http://data.giss.nasa.gov/.

[18] Nassif, A.B., Capretz, L.F., Ho, D., 2012. Software Effort Estimation in the
Early Stages of the Software Life Cycle Using a Cascade Correlation Neural
Network Model, in: 2012 13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing. IEEE, pp. 589–594.

[19] Parvez, A.W.M.M., 2013. Efficiency factor and risk factor based user case
point test effort estimation model compatible with agile software development,
in: Proceedings - 2013 International Conference on Information Technology and
Electrical Engineering: Intelligent and Green Technologies for Sustainable
Development", ICITEE 2013. Yogyakarta, Indonesia., pp. 113–118.

[20] Pentad-SE, 2014. VisualFsm The Software Measurement Tool [WWW
Document]. URL http://www.visualfsm.com/ (accessed 12.3.18).

[21] PROMISE, 2004. PROMISE datasets [WWW Document]. URL
http://www.promisedata.org

[22] Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case
study research in software engineering. Empir. Softw. Eng.

[23] Sharma, A., Kushwaha, D.S., 2013. An empirical approach for early estimation
of software testing effort using SRS document. CSI Trans. ICT 1, 51–66.

[24] Souza, P.P., Barbosa, M.W., 2010. Tailoring the Test Point Analysis
Estimation Technique in a Software Testing Process, in: IV Encontro Brasileiro
de Testes (EBTS) At: Recife.

[25] Srivastava, P.R., 2015. Estimation of software testing effort using fuzzy
multiple linear regression. Int. J. Softw. Eng. Technol. Appl. 1, 145.

[26] Srivastava, P.R., Bidwai, A., Khan, A., Rathore, K., Sharma, R., Yang, X.S.,
2014. An empirical study of test effort estimation based on bat algorithm. Int. J.
Bio-Inspired Comput. 6, 57.

[27] Srivastava, P.R., Varshney, A., Nama, P., Yang, X.S., 2012. Software test
effort estimation: a model based on cuckoo search. Int. J. Bio-Inspired Comput.
4, 278.

[28] Wadhwani, V., Memon, F., Hameed, M.M., 2008. Architecture based reliability
and testing estimation for mobile applications, in: Communications in Computer
and Information Science. Springer, Berlin, Heidelberg, pp. 64–75.

[29] Zapata-Jaramillo, C.M., Torres-Ricaurte, D.M., 2014. Test Effort: a Pre-
Conceptual-Schema-Based Representation. Dyna 81, 132–137.

Compliance Engineering Journal

Volume 11, Issue 6, 2020

ISSN NO: 0898-3577

Page No: 695

