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a b s t r a c t 

In marine ecology, plankton systems have rich and complex dynamics. The control of chaos in plankton 

systems is one of the main motives of recent research. In this article, the chaos control mechanisms is 

explored using internal parameters and external forces. Also, the availability of additional food for both 

zooplankton and fish is incorporated. The present work enhances the existing literature on the chaos 

control dynamics of available additional food for predator population by focusing on the consequences of 

predation delay and seasonal perturbations. It presents a comprehensive view of the different ranges of 

alternative food, periodic fluctuations, and time delay on the dynamics of the proposed system. The sta- 

bility analysis of the systems with and without predation delay is studied. The Hopf-bifurcation analysis 

is performed by taking time delay as a bifurcation parameter. Control of chaos in plankton-fish dynamics 

is explored with respect to additional food for plankton and fish population, predation delay, seasonal 

perturbations and delayed feedback control. The numerical simulation presents the validation of theoret- 

ical results. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In marine ecosystems, the plankton dynamics are highly chaotic 

nd unpredictable, which may result in the extinction of some 

pecies, the occurrence of plankton blooms, disease outbreaks, or 

nything unexpected in nature [1] . The natural processes in biolog- 

cal systems are likewise complex, non-linear, and their outcomes 

an explore chaotic behavior [2–5] . The control of chaos is a chal- 

enging matter and mechanisms behind these particular patterns 

re not fully understood [6] . Originating from the empirical work 

7,8] to recent research [2,4,9] on ecological systems, all the re- 

earch work was about the chaotic behavior of natural communi- 

ies. The main focus of these studies is plankton communities due 

o their irreplaceable contribution to the biosphere. Many ecolo- 

ists have reported the various chaos control techniques in ma- 

ine kingdom using different biological factors [10–14] . These stud- 

es provide a stabilizing influence for which the chaotic dynamics 

onverted to stable limit cycle oscillation. Moreover, various feed- 

ack and non-feedback mechanisms are also available in the lit- 
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rature [15–18] , which presents a different view on chaos control 

trategies in dynamical systems. Gakkhar et al. [19] have studied 

he impact of non-linear closure terms in plankton dynamics with 

ifferent functional responses for suppressing chaos. The marine 

cosystem is highly affected by seasonal forces, periodic fluctua- 

ions, and noise, etc. Many studies [20–24] have explored the role 

f these external forces on marine kingdom. 

The delay-induced mathematical models [25–27] represent 

ore realistic but complex dynamics since a time delay can cause 

nstability in the system by inducing various oscillations and peri- 

dic solutions. The impact of different types of time delays (mat- 

ration delay, predation delay, toxin liberation delay, and gestation 

elay, etc.) on various plankton dynamics has been studied in the 

ast two decades [28–33] . But the recent work [34] shows that the 

ime lag can stabilize the plankton system by excluding chaotic dy- 

amics. 

The parameters responsible for controlling the unpredictable 

ehavior of the dynamical systems for the co-existence of 

lankton-fish species have been extensively studied by researchers. 

dditional food source in aquatic life plays a significant role in 

he co-existence of plankton-fish dynamical systems and is the 

ain focus of recent research. The natural supply of alternative 

https://doi.org/10.1016/j.chaos.2021.111521
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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Table 1 

Biological description of parameters. 

Parameter Biological description 

r 1 Growth rate of TPP. 

α1 Death rate of P(t). 

β1 Maximum capture rate of P(t) by Z(t). 

β2 Maximum conversion rate of Z(t). 

γ1 Half saturation constant. 

γ2 Half saturation constant. 

a 1 Maximum capture rate of Z(t) by F(t). 

a 2 Maximum conversion rate of F(t). 

A 1 Additional food available for zooplankton. 

r 2 Death rate of Z(t). 

A 2 Additional food available for fish. 

θ Rate of toxin produced by phytoplankton. 

r 3 Natural dying rate of fish. 
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ood to predator population can provide biological control [25,26] , 

est control [27] , and disease control [28,29] in the food chain 

odels. In marine ecosystem, alternative food is available for zoo- 

lankton and fish species: as in the southwestern Gulf of Maine, 

esozooplankton grazers (Semibalanus, C. finmarchicus, etc.) con- 

istently avoided toxic phytoplankton (Alexandrium spp. and other 

inoflagellates) and selectively fed on alternative prey [35] . In the 

ortheast Pacific Ocean of the British Columbia coast, zooplank- 

on species not only consume phytoplankton but some hunter 

ooplankton like krill, jellyfish, and crabs, etc., prefer alternative 

ood (eggs, small zooplankton, and mass of other organisms, etc.) 

25,36] . Most of the fish species consume zooplankton, but the fish 

pecies (piscivorous fish, apex fish predators, marine mammals, 

nd reptiles, etc.) found in coral reefs located in the Pacific Ocean, 

he Indian Ocean, the Caribbean Sea, the Red Sea, and the Persian 

ulf, prefer planktivorous fish, squid, shellfish, or sea-grass, and a 

ew eat other mammals as additional food [37,38] . 

Sahoo et al. [9] have analyzed that the available additional food 

an stabilize the chaotic behavior of the plankton dynamics. They 

ave studied the consequences of providing alternative food to 

redator zooplankton on plankton dynamics. Extending the work 

9] , we have formulated a mathematical model in which alterna- 

ive food is available to the zooplankton and fish population. Sa- 

oo et al. [9] studied the role of quality and quantity of alter- 

ative food for controlling chaotic plankton dynamics. But in the 

resent paper, we have studied the impact of total available addi- 

ional food to zooplankton and fish, seasonal forces, and time de- 

ay in suppressing chaotic oscillations of a plankton-fish dynamical 

ystem to make ecological balance. We have formulated plankton- 

sh dynamics consisting of the biomass of phytoplankton (P(t)), 

ooplankton (Z(t)), and fish (F(t)). We have assumed that addi- 

ional food is available for both predator populations, viz. zoo- 

lankton and fish. The present manuscript is summarized as fol- 

ows; The non-delayed mathematical model, its dynamical proper- 

ies, and stability analysis with numerical simulation are discussed 

n Section 2, Section 3 , and Section 4 , respectively. The analysis 

f the chaotic system and its control using available additional 

ood and seasonality is studied in Section 5 . The delayed plank- 

on model, its positivity, boundedness, and Hopf-bifurcation analy- 

is with numerical validation are presented in Section 6 . The role 

f time delay in stabilizing chaotic plankton dynamics is discussed 

n Section 7 . Finally, we conclude in Section 8 . 

. The mathematical model 

Firstly, we consider the following model [9] 

dX 

dt 
= R 0 X 

(
1 − X 

K 0 

)
− C 1 A 1 

X Y 

B 1 + X 

, 

dY 

dt 
= A 1 

X 

B 1 + X 

Y − A 2 
Y Z 

B 2 + αμA + Y 
− D 1 A, 

dZ 

dt 
= C 2 A 2 

(Y + μA ) Z 

B 2 + αμA + Y 
− D 2 Z, 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(1) 

here X, Y, and Z are the densities of prey, middle predator, and 

op predator. R 0 is the intrinsic growth rate, K 0 is the carrying ca- 

acity, A 1 , and C 2 A 2 are the maximum growth rate of a middle and

op predator, respectively. The parameters D 1 and D 2 denote the 

atural death rate of middle and top predators, respectively. The 

vailable additional food for the top predator is denoted by αμA 

nd other parameters have their own meaning. 

To modify model (1) , we have formulated a plankton-fish model 

2) in which additional food is available for both predator popula- 

ions viz., zooplankton and fish. In this model, we take P(t), Z(t), 

nd F(t) as the population densities of the toxin-producing phyto- 

lankton (TPP), specialist predator zooplankton, and fish. It is as- 
2 
umed that phytoplankton is predated by zooplankton, which is 

 favorite food for the generalist predator fish. This mathemati- 

al model is applicable where alternative food is available for both 

ooplankton and fish species [35–37] . This tri-trophic interaction 

ystem without delay (with the biological interpretation of param- 

ters given in Table 1 ) is proposed by the following set of differen-

ial equations, 

dP 

dt 
= r 1 P − α1 P 

2 − β1 
P 

γ1 + A 1 + P 
Z, 

dZ 

dt 
= β1 β2 

P 

γ1 + A 1 + P 
Z − r 2 Z 

− a 1 
Z 

γ2 + A 2 + Z 
F − θ

P 

γ1 + A 1 + P 
Z, 

dF 

dt 
= −r 3 F + a 1 a 2 

Z 

γ2 + A 2 + Z 
F . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(2) 

. Dynamical behaviour of the plankton system 

.1. Positivity and boundedness 

heorem 3.1. The dynamical system (2) has a unique non- 

egative solution with the initial values (P (0) , Z(0) , F (0)) ∈ R 3 + , 
here R 3 + = { (ξ1 , ξ2 , ξ3 ) : ξi ≥ 0 , i = 1 , 2 , 3 } . Further, the set � =
 (P (t) , Z(t) , F (t)) ∈ R +3 ;U(t) ≤ r 2 

1 

α1 
} is invariant for all the solutions

n the interior of the positive octant. 

roof. The dynamical system (2) in the form of matrix is given by, 
dH 

dt 
= H(ξ ) , where ξ = (ξ1 , ξ2 , ξ3 ) 

T = (P, Z, F ) T ∈ R 3 , H(ξ ) =

 

H 1 (ξ ) 

H 2 (ξ ) 

H 3 (ξ ) 

) 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

r 1 P − α1 P 
2 − β1 

P 

γ1 + A 1 + P 
Z 

β1 β2 
P 

γ1 + A 1 + P 
Z − r 2 Z − a 1 

Z 

γ2 + A 2 + Z 
F 

−θ
P 

γ1 + A 1 + P 
Z 

−r 3 F + a 1 a 2 
Z 

γ2 + A 2 + Z 
F 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Since, H : R 3 → R 3 is locally Lipschitz continuous in � along 

ith ξ (0) = ξ0 ∈ R 3 , thus by fundamental theorem of ordinary dif- 

erential equations [39] , there must exist unique solution of (2) and 

 H i (ξ )] ξi (t)=0 ,ξ∈ R 3 ≥ 0 , implies ξ (t) > 0 ∀ t ≥ 0 . From model system

2) , 
dP 

dt P=0 
≥ 0 , 

dZ 

dt Z=0 
≥ 0 , and 

dF 

dt F =0 
≥ 0 . Therefore, the system 

2) has a unique positive solution. �

Next, we claim that all these solutions are uniformly bounded 

n the octant �. 
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Table 2 

Survival of plankton species in the absence and 

presence of fish biomass. 

Absence of fish Presence of fish 

P 3 = 35 . 9944 P ∗ = 38 . 5384 

Z 3 = 14 . 4007 Z ∗ = 5 . 3852 

Table 3 

Survival of fish species in the absence and presence 

of zooplankton (Z(t)). 

Presence of Z(t) Absence of Z(t) 

F ∗ = 0 . 3516 F 2 = 0 . 1420 

Table 4 

Comparison of phytoplankton in the absence and 

presence of predators. 

Availability of predators Biomass of P(t) 

In absence of Z(t) and F(t) P 1 = 39 . 9985 

Only Z(t) present P 3 = 35 . 9944 

In presence of Z(t) and F(t) P ∗ = 38 . 5384 
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c  
Let U(t) = P (t) + 

β1 

β1 β2 − θ
Z(t) + 

β1 

a 2 (β1 β2 − θ ) 
F (t) , 

dU 

dt 
≤ −α1 (P (t) − r 1 

α1 
) 2 + 

r 2 1 

α1 
− r 1 P (t) − r 2 β1 

(β1 β2 − θ ) 
Z(t) −

r 3 β1 

a 2 (β1 β2 − θ ) 
F (t) , 

dU 

dt 
≤ r 2 

1 

α1 
− ηU(t) , where η = min { r 1 , r 2 β1 

(β1 β2 − θ ) 
, 

r 3 β1 

a 2 (β1 β2 − θ )

dU 

dt 
+ ηU(t) ≤ r 2 1 

α1 
, implies 0 ≤ U(t) ≤ r 2 1 

α1 
+ 

U(P (0) , Z(0) , F (0)) 

e ηt 

using comparison theorem of ODE [40] ). As t → ∞ , we have,

(t) ≤ r 2 1 

α1 
, which implies that the solutions are bounded for 0 ≤

(t) ≤ r 2 
1 

α1 
. Therefore, all the solutions of the given plankton sys- 

em are lies in the octant, 

� = { (P (t) , Z(t) , F (t)) ∈ R +3 ;U(t) ≤ r 2 
1 

α1 
+ ε} , ∀ ε > 0 . 

. Stability analysis 

In this section, we determine the stability of the dynamical sys- 

em (2) about all equilibria. Firstly, we discuss the existence of 

ll steady states of the system and survival of the plankton fish 

pecies in the closed first octant R 3 + = { (P, Z, F ) : P ≥ 0 , Z ≥ 0 , F ≥
 } for the set of parameters [ S 1 ] : r 1 = 2 , α1 = 0 . 05 , β1 = 1 , γ1 = 1 ,

 1 = 35 , r 2 = 1 , β2 = 3 , a 1 = 1 . 5 , γ2 = 1 , A 2 = 9 , θ = 1 , r 3 = 0 . 7 ,

nd a 2 = 1 . 3333 . 

.1. Existence of equilibria 

emma 4.1. The positive interior equilibrium 

V ∗(P ∗, Z ∗, F ∗) exists if (i) a 1 a 2 > r 3 , (ii) G (0) = β1 Z ∗ − r 1 (γ1 +
 1 ) < 0 , and (iii) (β1 β2 − θ ) P ∗ > r 2 (γ1 + A 1 + P ∗) hold true. 

roof. We obtain Z ∗ = 

r 3 (γ2 + A 2 ) 

(a 1 a 2 − r 3 ) 
from given dynami- 

al system, which exists if a 1 a 2 > r 3 . Next, substituting 

 ∗ in first equation of given dynamics, we get G (P ∗) = 

1 P 
2 ∗ + (α1 γ1 + α1 A 1 − r 1 ) P ∗ + β1 Z ∗ − r 1 (γ1 + A 1 ) , which has a

ositive root P ∗ if G (0) = β1 Z ∗ − r 1 (γ1 + A 1 ) < 0 . We obtain

 ∗ = 

((β1 β2 − θ ) P ∗ − r 2 ((γ1 + A 1 + P ∗))((γ2 + A 2 + Z ∗)) 
(γ1 + A 1 + P ∗) a 1 

, which 

xists if (β1 β2 − θ ) P ∗ > r 2 ((γ1 + A 1 + P ∗) . �

Numerically , for a set of parameters [ S 1 ] , we obtain 

 ∗(38 . 5384 , 5 . 3852 , 0 . 3516) . The existence conditions of V ∗
re valid as (i) a 1 a 2 > r 3 (0 . 80 0 0 > 0 . 0 0 01) (ii) G (0) = β1 Z ∗ −
 1 (γ1 + A 1 ) < 0 (−6 < 0) , and (iii) (β1 β2 − θ ) P ∗ > r 2 (γ1 + A 1 + P ∗)
1 . 20013 > 0 . 44002) . 

emark 4.1. The existence of the interior equilibrium V ∗ in- 

icates the co-existence of plankton-fish species at the level 

 ∗(38 . 5384 , 5 . 3852 , 0 . 3516) . 

emma 4.2. The fish free equilibrium V 3 (P 3 , Z 3 , 0) exists if (i) a 1 a 2 >

 3 and (ii) g(0) = β1 Z 3 − r 1 (γ1 + A 1 ) < 0 hold good. 

roof. We obtain Z 3 = 

r 3 (γ2 + A 2 ) 

(a 1 a 2 − r 3 ) 
, which exists if a 1 a 2 > r 3 . Fur-

her, substituting the value of Z 3 in first equation of given dy- 

amical system (2) , we determine a quadratic equation g(P 3 ) = 

1 P 
2 
3 

+ (α1 γ1 + α1 A 1 − r 1 ) P 3 + β1 Z 3 − r 1 (γ1 + A 1 ) , which admits a

ositive root P 3 , if g(0) = β1 Z 3 − r 1 (γ1 + A 1 ) < 0 . �

Numerically , taking r 3 = 1 . 99 in [ S 1 ] , the steady state

 (35 . 9944 , 14 . 4007 , 0) exists as the conditions (i) a a > r 
3 1 2 3 

3 
2 > 1 . 99) and (ii) g(0) = β1 Z 3 − r 1 (γ1 + A 1 ) < 0 (g(0) =
57 . 59930 < 0) are numerically valid. 

emark 4.2. Biologically, the existence of V 3 shows that in the ab- 

ence of fish species, zooplankton biomass survives at a high level 

nd phytoplankton biomass at a low level, compared to its pres- 

nce at V ∗ as shown in Table 2 . 

emma 4.3. The axial steady state 

 2 

(
r 1 
α1 

, 0 , 
((β1 β2 − θ − r 2 ) r 1 − r 2 α1 (γ1 + A 1 ))(γ2 + A 2 ) 

a 1 ((γ1 + A 1 ) α1 + r 1 ) 

)
exists if 

 O 1 ] : β1 β2 r 1 > θ r 1 + r 2 ((γ1 + A 1 ) α1 + r 1 ) holds true. 

Numerically , taking β1 = 1 . 2 , A 1 = 3 , r 2 = 2 , and r 3 = 0 . 1 in

 S 1 ] (other parameters are same), the zooplankton free equilib- 

ium V 2 (39 . 9985 , 0 , 0 . 1420) exists, as its existence condition [ O 1 ] :

1 β2 r 1 > θ r 1 + r 2 ((γ1 + A 1 ) α1 + r 1 ) (7 . 2 > 6 . 400) is satisfied. 

emark 4.3. Ecologically, the significance of the equilibrium state 

 2 lies in the fact that the fish population can survive on available 

dditional food at level F 2 = 0 . 1420 , compared to its survival F ∗ =
 . 3516 in the presence of its prey and never extinct (see Table 3 ). 

emma 4.4. The zero equilibrium V 0 (0 , 0 , 0) and trivial steady state

 1 ( 
r 1 
α1 

, 0 , 0) always exist. 

Numerically , taking θ = 1 . 5 in [ S 1 ] , we obtain the predator free

teady state V 1 (39 . 9985 , 0 , 0) . 

emark 4.4. The existence of V 1 conveys that the phytoplankton 

iomass (P 1 = 39 . 9985) survive at a high level in the absence of

oth predators than their presence (see Table 4 ). 

.2. Stability of equilibrium points 

emma 4.5. The zero equilibrium V 0 is unstable as r 1 = 0 . 5 is a pos-

tive eigen value of the corresponding variational matrix. 

emma 4.6. The predator free equilibrium V 1 remains stable if the 

ondition 

G 1 : A 1 > 

(β1 β2 − θ ) r 1 − r 2 (γ1 α1 + r 1 ) 

r 2 α1 
holds good. 

Numerically , taking θ = 1 . 5 in [ S 1 ] , the given system (2) is lo-

ally asymptotically stable (LAS) as (1) G : (9 > 0 . 0048) is satis-
1 
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Fig. 1. Time series graph of chaotic behavior of the given system (2) using [ S 2 ] . 

fi

a

L

l  

A

 

p

L

i  

i

 

0  

(

L  

a

r  

0  

t

0

5

c

e  

t  

5

m

l

r

Fig. 2. Phase portrait showing sensitive dependence to initial condition of the tra- 

jectories of chaotic system using [ S 2 ] . 
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ed. (2) The eigen values of the corresponding variational matrix 

round V 1 are –0.4999, –0.0707, and –0.0200. 

emma 4.7. The zooplankton free steady state V 2 remains stable as 

ong as the condition G 2 holds true, where G 2 : (i) r 1 < 2 α1 P 2 and (ii)

 2 −
(β1 β2 − θ ) P 2 + (a 1 F 2 − r 2 γ2 )(γ1 + A 1 + P 2 ) 

(γ1 + A 1 + P 2 ) r 2 − (β1 β2 − θ ) P 2 
> 0 . 

Numerically , taking β1 = 1 . 2 , A 1 = 3 , r 2 = 2 , r 3 = 0 . 1 and other

arameters as in [ S 1 ] , the system is LAS around V 2 as; 

1. G 2 : (i) r 1 < 2 α1 P 2 (0 . 5 < 1 . 2001) and (ii) A 2 −
(β1 β2 − θ ) P 2 + (a 1 F 2 − r 2 γ2 )(γ1 + A 1 + P 2 ) 

(γ1 + A 1 + P 2 ) r 2 − (β1 β2 − θ ) P 2 
> 0 (64 . 17790 > 0) . 

2. All the eigen values of the jacobian matrix corresponding to V 2 
are negative i.e. –0.60 013, –0.0 0 010, and –0.07872. 

emma 4.8. The fish free equilibrium V 3 remains locally asymptot- 

cally stable as long as the condition G 3 : E 1 E 2 − E 3 > 0 and E i > 0 ,

 = 1 , 3 (Routh-Hurwitz criterion) is satisfied. 

The values of E ′ 
i 
s are given in Appendix A . 

Numerically , the steady state V 3 is LAS as G 3 : E 1 E 2 − E 3 =
 . 0 0 022 > 0 , E 1 = 0 . 0906 > 0 , and E 3 = 0 . 0 0 063 > 0 holds true

using r 3 = 1 . 99 in [ S 1 ] ). 

emma 4.9. The interior equilibrium V ∗ remains LAS if F 1 F 2 − F 3 > 0

nd F i > 0 ∀ i = 1 , 3 (Routh-Hurwitz criterion). 

The values of F ′ 
i 

s are given in Appendix A . 

Numerically , for the set of parameters [ S 1 ] the interior equilib- 

ium V ∗ is locally asymptotically stable as (1) F 1 F 2 − F 3 = 0 . 02562 >

 , F 1 = 1 . 876910 > 0 , and F 3 = 0 . 0294 > 0 . (2) The eigen values of

he corresponding variational matrix around V ∗ are −0 . 00363 ±
 . 12547 i and -1.86964. 

. Analysis of chaotic dynamics 

In this section, we will introduce certain criteria to control the 

omplexity of the given plankton system w.r.t. some internal and 

xternal parameters. For that we consider a set of parameters [ S 2 ] :

aking A 1 = 7 and rest of the parametric values are same as in [ S 1 ] .

.1. Dissipativity condition [41,42] 

Let U be the volume of the moving space of the phase space 

otion. To verify the dissipativity condition, we consider the fol- 

owing function, ∇(U) = 

d ̇ P 

dP 
+ 

d ̇ Z 

dZ 
+ 

d ̇ F 

dF 
. 

After some simple mathematical calculations at V ∗, we get 

∇(U) ≤ −(2 α1 P ∗ + 

β1 (α1 + A 1 ) 

(γ1 + A 1 + P ∗) 2 
+ r 2 + 

a 1 ( γ2 + A 2 ) 

( γ2 + A 2 + Z ∗) 2 
+ 

 ) < 0 . 
3 

4 
As 2 α1 P ∗ + 

β1 (α1 + A 1 ) 

(γ1 + A 1 + P ∗) 2 
+ r 2 + 

a 1 (γ2 + A 2 ) 

(γ2 + A 2 + Z ∗) 2 
+ r 3 > 0 and 

 → ∞ , each volume containing the trajectories of dynamics 

2) shrinks to zero at an exponential rate. Thus, all the dynamical 

rbits are confined to a subset of zero volume and the asymptotic 

ehavior settles onto a chaotic attractor in the three-dimensional 

hase space Fig. 1 using [ S 2 ] . 

.2. Sensitivity to initial conditions 

In Fig. 3 , the time-series graph shows the chaotic behavior of 

tate variables P (t) , Z(t) , and F (t) . Moreover, the system (2) is

haotic as it is sensitive to the initial condition, which is one of the 

ost visible sign of chaotic behavior of any dynamical system. We 

ave observed from the phase portrait ( Fig. 2 ) that both curves fol-

ow the same path for some time, but after that, these trajectories 

ivert from each other. Indeed, the two-time series graph of each 

tate variable in the system (2) about neighboring initial conditions 

s shown in Fig. 3 . The first time-series graph of Fig. 3 shows that

oth curves perfectly superimposed up to 50 iterations and after 

hat, the curve (red line) drawn with the initial condition [1.1,1,1] 

ivert from the path drawn by the curve (blue line) with the initial 

ondition [1,1,1]. Similarly, second and third graph of Fig. 3 show 

he sensitivity of the system (2) about the initial condition for the 

et of parameters [ S 2 ] . 

.3. Analysis of Lyapunov exponents 

The most effective way to detect the chaos in any dynamical 

ystem is to check the growth or decline rate of the small pertur- 

ations along the axis of the phase diagram through the Lyapunov 

xponent. For the given dynamical system (2) , we have estimated 

hree Lyapunov exponents using MATLAB software and the inte- 

rator ode87. Fig. 4 exhibits the obtained Lyapunov spectrum of 

he chaotic system. The exponent λ1 = 0 . 0293 shows the increase 

n the expansion degree of chaotic attractor, where the smallest 

xponent λ3 = −1 . 0223 exhibits the increase in contraction degree 

f attractor in the phase diagram. The critical nature of this chaotic 

ttractor is translated by the exponent λ2 = −0 . 0016 . The Kaplan- 

orke dimension of the chaotic system dynamics (2) , which shows 

he complexity of the strange attractor, is given by; 
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Fig. 3. Sensitive dependence to initial condition of the state trajectories P(t) , Z(t) , and F (t) of chaotic system using [ S 2 ] . 

Fig. 4. Lyapunov spectrum of system (2) using [ S 2 ] . 
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a stable limit cycle at A = 25 ( Fig. 7 d). 
D L = 2 + 

λ1 + λ2 

| λ3 | = 2 . 0161 . 

Therefore, the dynamical system (2) generates chaotic behaviors 

haracterized by fractional-order dimension. 

.4. Analysis of system dynamics with respect to available additional 

ood to both predators 

Firstly, we prove that the system (2) observes Hopf-bifurcation 

ith the occurrence of periodic oscillations w.r.t. available addi- 

ional food to zooplankton ( A 1 ). 

emma 5.1. The chaotic dynamical system enters into Hopf- 

ifurcation around the interior point V ∗ as A 1 passes through its crit- 

cal value A 

∗
1 

under the following conditions, 

1. F i (A 

∗
1 ) > 0 , i = 1,3, F 1 (A 

∗
1 ) F 2 (A 

∗
1 ) − F 3 (A 

∗
1 ) = 0 , 

2. (F 1 (A 

∗
1 ) F 2 (A 

∗
1 )) 

′ � = (F 3 (A 

∗
1 )) 

′ . 

roof. We consider A 1 as a bifurcation parameter, the given plank- 

on system shows excitability if there exists a critical value A 

∗
1 of A 1 

uch that F 1 (A 

∗
1 
) F 2 (A 

∗
1 
) − F 3 (A 

∗
1 
) = 0 . Thus, the characteristic equa-

ion 

3 + F 1 λ
2 + F 2 λ + F 3 = 0 , (3) 

ust have of the following form at A 1 = A 

∗
1 

λ2 (A 

∗
1 ) + F 2 (A 

∗
1 ))(λ(A 

∗
1 ) + F 1 (A 

∗
1 )) = 0 , (4)

he Eqn. 4 clearly has roots −F 1 (A 

∗
1 
) and ±ι

√ 

F 2 (A 

∗
1 
) . But, 

n general, λ1 (A 1 ) = u (A 1 ) + ιv (A 1 ) , λ2 (A 1 ) = u (A 1 ) − ιv (A 1 ) , and

3 (A 1 ) = F 1 (A 1 ) . Substituting values of λi , i = 1 , 2 in (3) and calcu-

ating the derivatives, we get 

M 1 (A 1 ) u 

′ (A 1 ) − M 2 (A 1 ) v ′ (A 1 ) + M 3 (A 1 ) = 0 , 

M 1 (A 1 ) u 

′ (A 1 ) + M 2 (A 1 ) v ′ (A 1 ) + M 4 (A 1 ) = 0 . 
(5) 

here M (A ) = 3 u 2 (A ) + 2 F (A ) u (A ) + F (A ) − 3 v 2 (A ) , 
1 1 1 1 1 1 2 1 1 

5 
M 2 (A 1 ) = 6 u (A 1 ) v (A 1 ) + 2 F 1 (A 1 ) v (A 1 ) , 

M 3 (A 1 ) = u 2 (A 1 ) F 
′ 

1 (A 1 ) + F ′ 2 (A 1 ) u (A 1 ) + F ′ 3 (A 1 ) − F ′ 1 (A 1 ) v 2 (A 1 ) , 

nd 

M 4 (A 1 ) = 2 u (A 1 ) v (A 1 ) F 
′ 

1 
(A 1 ) + F ′ 

2 
(A 1 ) v (A 1 ) . 

Taking u (A 

∗
1 ) = 0 and v (A 

∗
1 ) = 

√ 

F 2 (A 

∗
1 
) , we obtain 

M 1 (A 

∗
1 
) = −2 F 2 (A 1 ) , M 2 (A 

∗
1 
) = 2 F 1 (A 

∗
1 
) 
√ 

F 2 (A 

∗
1 
) , M 3 (A 

∗
1 
) =

 

′ 
3 
(A 

∗
1 
) − F ′ 

1 
(A 

∗
1 
) F 2 (A 

∗
1 
) , 

M 4 (A 

∗
1 
) = F ′ 

2 
(A 

∗
1 
) 
√ 

F 2 (A 

∗
1 
) . 

Solving (5) for u ′ (A 1 ) , we get 

(u ′ (A 1 )) A 1 = A ∗1 = − M 2 (A 

∗
1 
) M 4 (A 

∗
1 
) + M 1 (A 

∗
1 
) M 3 (A 

∗
1 
) 

M 

2 
1 
(A 

∗
1 
) + M 

2 
2 
(A 

∗
1 
) 

= 

−(F 1 (A 

∗
1 
) F 2 (A 

∗
1 
)) ′ − F ′ 

3 
(A 

∗
1 
)) 

2(F 1 (A 

∗
1 
) 2 + F 2 (A 

∗
1 
)) 

� = 0 (using given hypothesis). �

Numerically , 

[
d(u ) 

dA 1 

]
A 1 =33 . 5 

= −0 . 176479 � = 0 . 

Therefore, the transversality condition holds, which results in 

he occurrence of Hopf-bifurcation at A 1 = A 

∗
1 = 33 . 5 . 

Now, we discuss the chaos control strategies of the system 

2) using A 1 and A 2 . 

The chaotic behavior in natural population is very commonly 

tudied from three-four decades [9,14,19,26,43–45] . These studies 

argeted mainly aquatic species because the marine world plays a 

ignificant role in sustaining life in the biosphere. Many scientists 

uggested various techniques (feedback and non-feedback) and dis- 

inct parameters to suppress chaotic dynamics and get stable tra- 

ectories [9,14–17] . In this subsection, we utilize the available addi- 

ional food to zooplankton and fish as chaos control parameters. 

• We have observed that as the natural supply of additional food 

for zooplankton ( A 1 ) increases in [ S 2 ] , the chaotic system turns

to a stable one. The given system shows chaotic trajectories 

for the set of parameters [ S 2 ] ( Fig. 6 a), it changes its behav-

ior from chaotic to quasi-periodic at A 1 = 14 ( Fig. 6 b), dou-

ble periodic at A 1 = 14 . 8 ( Fig. 6 c), and turns to single periodic

at A 1 = 28 ( Fig. 6 d). The system observes periodic oscillations 

with the occurrence of Hopf-bifurcation at A 1 = 33 . 5 ( Fig. 6 e)

and switches to stability at A 1 = 34 ( Fig. 6 f). In Fig. 5 , the bi-

furcation diagrams of P (t) , Z(t) , and F (t) reveal rich dynamical 

behavior in the system including chaos. 
• Fig. 7 shows that chaos disappears with the occurrence of a 

stable limit cycle as the available alternative food for fish ( A 2 ) 

varies in [ S 2 ] . We have observed by simulation that the chaotic 

dynamics (2) switch to multiple periods at A 2 = 12 ( Fig. 7 b),

countable limit cycles at A 2 = 20 ( Fig. 7 c), and settle down at
2 
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Fig. 5. Bifurcation diagrams with respect to A 1 of the system (2) using [ S 2 ] . 

Fig. 6. Behavior of the system with respect to available additional food for zooplankton A 1 using [ S 2 ] . 

Fig. 7. Behavior of the system with respect to available additional food for fish ( A 2 ) using [ S 2 ] . 

6 
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Fig. 8. Existence of stable, single periodic and double periodic orbits. 
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.5. Chaos control using sinusoidal force 

The impact of seasonality, noise, periodic forcing on popu- 

ation dynamics have been studied by many ecologists [46–50] . 

hey have observed that the system becomes chaotic due to the 

easonality or external powers (sinusoidal force). In the previous 

wo three decades, several studies are available which investigates 

he chaos control strategies [18,19,51] . But the impact of seasonal 

orces for controlling chaos in the marine population is rarely seen 

y us. In this subsection, we have perturbed the system (2) by im- 

osing the sinusoidal force on population dynamics of zooplank- 

on species. Thus, a weak seasonal periodic force h(t) is applied for 

ontrolling the unpredictable behavior of the given dynamical sys- 

em, where h (t) = J 1 + J 2 sin (αt) , in which J 1 is a constant bias, J 2 ,

nd α denote the amplitude and frequency of the external periodic 

orce. 

dP 

dt 
= r 1 P − α1 P 

2 − β1 
P 

γ1 + A 1 + P 
Z, 

dZ 

dt 
= β1 β2 

P 

γ1 + A 1 + P 
Z − r 2 Z − a 1 

Z 

γ2 + A 2 + Z 
F (t) 

− θ
P 

γ1 + A 1 + P 
Z + h (t) , 

dF 

dt 
= −r 3 F + a 1 a 2 

Z 

γ2 + A 2 + Z 
F . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(6) 

e have carried out numerical simulation of the controlled sys- 

em (6) using following set of parameters; [ S 3 ] : [ S 2 ] , J 1 = 0 . 05 ,

 2 = 0 . 0 . 05 , and α = 22 / 7 . 

[ S 4 ] : [ S 2 ] , J 1 = 1 , J 2 = 1 , and α = 22 / 7 . 

[ S 5 ] : [ S 2 ] , J 1 = 1 , J 2 = 2 , and α = 22 / 7 . 

We have observed that the controlled system (6) converts the 

haotic trajectories of given dynamics (2) to double periodic orbit 

t [ S 3 ] ( Fig. 8 a), single periodic at [ S 4 ] ( Fig. 8 b), and settled down

o stable focus around (37.6431, 5.3866, 10.4678) for the set of pa- 

ameters [ S 5 ] ( Fig. 8 c). 

. Delayed model system 

In this section, we include a predation delay in model system 

2) and obtained the following delayed dynamics. 

dP 

dt 
= r 1 P − α1 P 

2 − β1 
P 

γ1 + A 1 + P 
Z, 

dZ 

dt 
= β1 β2 

P 

γ1 + A 1 + P 
Z − r 2 Z 

− a 1 
Z 

γ2 + A 2 + Z 
F (t − τ ) − θ

P 

γ1 + A 1 + P 
Z, 

dF 

dt 
= −r 3 F + a 1 a 2 

Z 

γ2 + A 2 + Z 
F . 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(7) 

.1. Positivity and boundedness 

heorem 6.1. The positive interior equilibrium V ∗(P ∗, Z ∗, F ∗) of the

ynamical system (7) is invariant in positive quadrant. 

roof. We want to show that for all 0 ≤ t < T ∗, (T ∗ > 0) , P (t) >

 , Z(t) > 0 , and F (t) > 0 with the initial conditions P (0) > 0 ,
7 
(0) > 0 , and F (0) > 0 , otherwise, it can be assumed that ∃ a K,

here 0 < K < T ∗ such that ∀ t ∈ [0 , K) , P (t) > 0 , Z(t) > 0 , and

 (t) > 0 , and one of P (K ) , Z(K ) , and F (K ) is zero for any t ∈
 −τ, K) . Integrating the given model system (7) , we have P (K) =

 (0) e 

∫ t 
0 (r 1 −α1 P−β1 

Z 

γ1 + A 1 + P 
) ds 

, Z(K) = Z(0) e 
∫ t 

0 (W ) ds , where W = 

1 β2 
P 

γ1 + A 1 + P 
− r 2 − a 1 

1 

γ2 + A 2 + Z 
F (t − τ ) − θ

P 

γ1 + A 1 + P 
, and 

 (K) = F (0) e 

∫ t 
0 (−r 3 + a 1 a 2 

Z 

γ2 + A 2 + Z 
) ds 

. Since P (t) , Z(t) , and F (t)

re all continuous functions in [ −τ, K) , there exist 

S > 0 such that P (K) = P (0) e 

∫ t 
0 (r 1 −α1 P−β1 

Z 

γ1 + A 1 + P 
) ds 

> 

 (0) e −KS , Z(K) = Z(0) e 
∫ t 

0 (W ) ds > Z(0) e −KS , and F (K) =

 (0) e 

∫ t 
0 (−r 3 + a 1 a 2 

Z 

γ2 + A 2 + Z 
) ds 

> F ( 0) e −KS , ∀ t ∈ [ −τ, K) . Taking

 → K , we get P (K ) > 0 , Z(K ) > 0 , and F (K ) > 0 , a contradiction.

hus P (t) > 0 , Z(t) > 0 , and F (t) > 0 for any 0 ≤ t < T ∗. �

.2. Hopf-bifurcation analysis of the system with delay 

See Appendix B . 

. Chaos control through predation delay 

Many mathematical studies [18,20–22,26,29,52] from the very 

rst research [53] on time delay prove that the inclusion of time 

ag in ecological models results in occurrence of Hopf-bifurcation 

ith periodic oscillations. But, Thakur et al. [34] have analyzed in 

heir recent study that time delay plays a vital role in controlling 

haotic plankton system. They have investigated that as the dis- 

rete delay τ increases, the chaotic plankton fish dynamics exhibits 

eriodic oscillations of order two, then reduces to limit cycle, and 

nally shows stable focus. We have also showed numerically that 

he predation delay can stabilize the chaotic plankton-fish dynam- 

cs. Fig. 10 (using [ S 2 ] ) shows that in the absence of predation de-

ay τ and at τ = 0 . 0 0 01 , the model system (7) shows chaotic be-

avior. As the predation delay increases from 0.0 0 01 to 0.03, the 

haotic dynamics convert into multiple trajectories, becomes dou- 

le periodic for τ = 0 . 05 , and shows a stable limit cycle at τ = 1 . 1 .

.1. Chaos control through delayed feedback scheme 

Delayed feedback control is a well-documented mechanism that 

as been implemented in various spatially extended systems of 

ptics, chemical sciences, biology, and neurology [4 8,4 9] . But the 

mpact of time delay on the marine ecosystem through delayed 

eedback technique is less known. In this subsection, we have con- 

tructed a controlled plankton-fish dynamics (8) to eliminate chaos 

nd stabilize the unstable periodic orbits of period τ of the system 
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Fig. 9. Behavior of the system at different values of τ . 

Fig. 10. Control of chaos through predation delay τ . 

Fig. 11. Dynamics of the system (8) using [ S 6 ] . 
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dP 

dt 
= r 1 P − α1 P 

2 − β1 
P 

γ1 + A 1 + P 
Z 

− K 1 (P (t) − P (t − τ )) , 

dZ 

dt 
= β1 β2 

P 

γ1 + A 1 + P 
Z − r 2 Z − a 1 

Z 

γ2 + A 2 + Z 
F (t) 

− θ
P 

γ1 + A 1 + P 
Z − K 2 (Z(t) − Z(t − τ )) , 

dF 

dt 
= −r 3 F + a 1 a 2 

Z 

γ2 + A 2 + Z 
F 

− K 3 (F (t) − F (t − τ )) . 

(8) 

ere, diag(K 1 , K 2 , K 3 ) is the feedback matrix, and τ is taken to

e the same as the period of the target unstable periodic orbits. 

irstly, we consider set of parameters [ S 6 ] : [ S 2 ] , K 1 = 1 , K 2 = 1 ,

 3 = 1 , and τ = 1 . 3 , for which the system (8) shows periodic os-

illations of period four, as τ increases from 1.3 to 1.5, it converts 

nto double period, and finally becomes stable around stable limit 

ycle at τ = 2 and for higher values of τ ( Fig. 11 ). 

. Conclusion 

In this article, we proposed some ecological models to study the 

haotic behavior of plankton dynamics. We observed that chaos 

an be controlled by varaying factors/parameters, viz., available 

dditional food, seasonality, predation delay etc. Analytically, we 

tudied stability analysis of delayed and non-delayed plankton dy- 

amics. The Hopf-bifurcation analysis is performed using A 1 and 

redation delay as bifurcation parameters. Ecologically, we have 

bserved the following implications of our study. 

• The available additional food for zooplankton A 1 has a signifi- 

cant role in the dynamics of the proposed dynamical system. It 

is observed from Fig. 6 that its suitable availability stabilizes the 

chaotic behavior of the dynamical system (2) . The given system 

shows chaotic behavior at [ S ] , quasi periodic at A = 14 , dou-
2 1 

8 
ble periodic at A 1 = 14 . 8 , Hopf-bifurcation at A 1 = 33 . 5 , and be-

comes stable at A 1 = 35 . The bifurcation diagrams in Fig. 5 con-

firm the rich dynamical behavior of the system (2) at different 

levels of A 1 . 
• The additional food for fish A 2 also has the similar effects on 

the dynamics of the proposed dynamical system. From Fig. 7 , it 

is observed that as ( A 2 ) increases from 9 to 12 in [ S 2 ] the sys-

tem changes its behavior from chaos to multiple periods, count- 

able limit cycles at A 2 = 20 , and a stable limit cycle at A 2 = 25 . 
• The results of our study reveal that the weak sinusoidal force 

can convert the chaotic behavior of the system to double peri- 

odic orbit using [ S 3 ] , single periodic orbit using [ S 4 ] , and finally

system becomes stable for the set of parameters [ S 5 ] as pre- 

sented in Fig. 8 . 
• We have observed from Fig. 9 that predation delay not only un- 

stabilizes the stable dynamics (2) but also stabilizes the chaotic 

system as shown in Fig. 10 . 
• A chaos control delayed feedback scheme (8) has been pre- 

sented to suppress the chaotic nature of plankton dynamics (2) . 

Fig. 11 shows that as τ increases in [ S 6 ] , the system (8) shows

periodic trajectories of period four, then of the period two, and 

finally the system becomes stable around the stable limit cycle. 

Thus, it can be concluded that the present biological models ex- 

ibit various intervals of internal parameters and external factors 

hat shows rich dynamics and control of chaos in the plankton-fish 

cosystem. 
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ppendix A 

1. The variational matrix W ∗ of the positive interior equilibrium V ∗
is given by; 

W ∗ = 

[ 

A 100 A 010 A 001 

B 100 B 010 B 001 

C 100 C 010 C 001 

] 

, where A 100 = r 1 − 2 α1 P ∗ −

β1 Z ∗(γ1 + A 1 ) 

(γ1 + A 1 + P ∗) 2 
, A 010 = − β1 P ∗

(γ1 + A 1 + P ∗) 
, A 001 = 0 , B 100 = 

(β1 β2 − θ )(γ1 + A 1 ) Z 

(γ1 + A 1 + P ∗) 2 
, B 010 = −r 2 + 

(β1 β2 − θ ) P ∗
(γ1 + A 1 + P ∗) 

−
(a 1 (γ2 + A 2 ) F ∗
(γ2 + A 2 + Z ∗) 2 

, B 001 = − a 1 Z ∗
(γ2 + A 2 + Z ∗) 

, C 100 = 0 , 

C 010 = 

a 1 a 2 (γ2 + A 2 ) F ∗
(γ2 + A 2 + Z ∗) 2 

, C 001 = −r 3 + 

(a 1 a 2 Z ∗
(γ2 + A 2 + Z ∗) 

, 

The characteristic equation of the variational matrix W ∗ w.r.t. V ∗
is λ3 + F 1 λ

2 + F 2 λ + F 3 = 0 , where 

F 1 = −(A 100 + B 010 + C 001 ) , F 2 = −A 010 B 100 − A 001 C 100 −
C 010 B 001 + B 010 C 001 + A 100 B 010 + A 100 C 001 , F 3 = A 100 C 010 B 001 +
A 010 B 100 C 001 + A 001 C 100 B 010 − A 100 B 010 C 001 − A 010 C 100 B 001 −
A 001 B 100 C 010 , 

Now, using Routh-Hurwitz criterion, the variation matrix W ∗
has negative eigen values or eigen values with negative real 

parts if F 1 F 2 − F 3 > 0 and F i > 0 for i = 1 , 3 holds true around

V ∗. 

2. The variational matrix U ∗ of the positive interior equilibrium V 3 

is given by; U ∗ = 

[ 

d 100 d 010 d 001 

e 100 e 010 e 001 

f 100 f 010 f 001 

] 

, 

where d 100 = r 1 − 2 α1 P 3 −
(β1 Z 3 (γ1 + A 1 )) 

(γ1 + A 1 + P 3 ) 2 
, d 010 = 

− (β1 P 3 ) 

(γ1 + A 1 + P 3 ) 
, d 001 = 0 , e 100 = 

(β1 β2 − θ ) ∗ (γ1 + A 1 ) ∗ Z 3 
(γ1 + A 1 + P 3 ) 2 

, 

e 010 = −r 2 + 

(β1 β2 − θ ) P 3 ) 

(γ1 + A 1 + P 3 ) 
, e 001 = − a 1 ∗ Z 

(γ2 + A 2 + Z 3 ) 
, f 100 = 0 , 

f 010 = 0 , and f 001 = −r 3 + 

a 1 a 2 Z 3 ) 

(γ2 + A 2 + Z 3 ) 
. 

The characteristic equation of the variational matrix U ∗ w.r.t. V 3 
is λ3 + E 1 λ

2 + E 2 λ + E 3 = 0 , where E 1 = −(d 100 + e 010 + f 001 ) ,

E 2 = −d 010 e 100 − d 001 f 100 − f 010 e 001 + e 010 f 001 + d 100 Z 010 + 

d 100 f 001 , and E 3 = d 100 f 010 e 001 + d 010 e 100 f 001 + d 001 f 100 e 010 −
d 100 e 010 f 001 − d 010 f 100 e 001 − d 001 e 100 f 010 . Now, the steady state

V 3 is locally asymptotically stable if G 3 : E 1 E 2 − E 3 > 0 and 

E i > 0 for i = 1 , 3 hole true. 

ppendix B 

To determine the occurrence of Hopf-bifurcation w.r.t. time lag 

in the given dynamical system (7) , we linearize the differen- 

ial equations about V ∗ by choosing p = P − P ∗, z = Z − Z ∗ and f =
 − F ∗. Applying simple calculations and using theorems on delay 

ifferential equations [54] , we get the characteristic equation for 

he system (7) at V ∗ as 

3 + D 1 λ
2 + D 2 λ + D 3 + (D 4 + D 5 λ) e −λτ = 0 , (B.1)
9 
here D 1 = −a 100 − b 010 − c 001 , D 2 = a 100 b 010 − a 010 b 100 +
 100 c 001 + c 001 b 010 , D 3 = −a 100 b 010 c 001 + a 010 b 100 c 001 , D 4 =
 100 c 010 B 

′ 
001 

, D 5 = B ′ 
001 

c 010 

a 100 = r 1 − 2 α1 P ∗ − β1 (γ1 + A 1 ) Z ∗
(γ1 + A 1 + P ∗) 2 

, a 010 = − β1 P ∗
(γ1 + A 1 + P ∗) 

, 

 001 = 0 , b 100 = 

(β1 β2 − θ )(γ1 + A 1 ) Z ∗
(γ1 + A 1 + P ∗) 2 

, b 010 = −r 2 + 

(β1 β2 − θ ) P ∗
(γ1 + A 1 + P ∗) 

− a 1 (γ2 + A 2 ) F ∗
(γ2 + A 2 + Z ∗) 2 

, b 001 = 0 , B ′ 001 = − a 1 Z ∗
(γ2 + A 2 + Z ∗) 

, 

nd c 010 = 

a 1 a 2 (γ2 + A 2 ) F ∗
(γ2 + A 2 + Z ∗) 2 

, c 001 = −r 3 + 

a 1 a 2 Z ∗
γ2 + A 2 + Z ∗

. 

After some mathematical simplifications and 

sing criteria of [30,31] , we can obtain τk = 

1 

ω 1 0 

arctan 

D 5 ω 1 0 
(D 1 ω 

2 
1 0 

− D 3 ) + D 4 (D 2 ω 1 0 
− ω 

3 
1 0 

) 

(D 1 ω 

2 
1 0 

− D 3 ) − D 5 ω 1 0 
(D 2 ω 1 0 

− ω 

3 
1 0 

) 
+ 

2 kπ

ω 1 0 

, k = 

 , 1 , 2 . . . . , provided D 4 ((D 2 − 3 ω 

2 
1 0 

) sin ω 1 0 
τ + 2 ω 1 0 

D 1 cos ω 1 0 
τ ) −

 1 0 
D 5 (ω 1 0 

D 5 (D 2 − 3 ω 

2 
1 0 

) cos ω 1 0 
τ − 2 ω 1 0 

D 1 sin ω 1 0 
τ + D 5 ) � = 0 . (

d (λ) 

dτ

)−1 ∣∣
σ=0 ,τ= τ0 

= 

L 

ω 1 0 
(D 

2 
4 

+ ω 

2 
1 0 

D 

2 
5 
) 

� = 0 , where L = 

 4 ((D 2 − 3 ω 

2 
1 0 

) sin ω 1 0 
τ + 2 ω 1 0 

D 1 cos ω 1 0 
τ ) − ω 1 0 

D 5 (ω 1 0 
D 5 (D 2 −

 ω 

2 
1 0 

) cos ω 1 0 
τ − 2 ω 1 0 

D 1 sin ω 1 0 
τ + D 5 ) , ω 1 0 

is purely imagi-

ary root of (B.1) , and τ0 is the critical value of τ after which 

opf-bifurcation occurs. 

Numerically , for the set of parameters [ S 1 ] , the transversal- 

ty condition 

(
d (λ) 

dτ

)−1 ∣∣
σ=0 ,τ= τ0 

= 0 . 0817 � = 0 holds at τ = 0 . 4 

hat confirm the occurrence of Hopf bifurcation with the existence 

f periodic solutions ( Fig. 8 ). The critical value of time delay for 

hich stability exchanges takes place is τ0 = 0 . 4 such that V ∗ re-

ains stable in (0, 0.4) and bifurcation occurs for τ0 ≥ 0 . 4 . 
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